Operations Concerns

P. Carolan (DOE), P. Ingrassia (BNL), M. Lamont (CERN), G. Marr (BNL), R. Mau (FNAL), K. Rehlich (DESY), T. Shrey (BNL), M. Spata (TJNAF)

Development and Unification of Regulatory Requirements

- Concern: ESH rules differ by country
- Operators need to be made aware of rules different from those of their native country
- Answer: reach international agreement

Staff Makeup: Differing Operations Models by Laboratory

- Engineer (DESY) vs. Physicist (FNAL, CERN, BNL)
- Bachelors degree vs. Technicians
- Outside contractors (KEK)
- Which model is "best"?

Training / Consistency of Training

- Design and implement appropriate balance of on–site and remote training (including OJT)
- Centralized training coordinator and documentation/records
- Reactor model "rigorous control to insure uniform, timely training"

Operator Focus – How Many Machines Do They Work On? (Local vs. Remote)

• Dedicated operations group for remote operation -- that is -- the group does not serve the local laboratory AND the remote laboratory.

Language/culture Differences

- Adopt primary language for operations.
- Encourage multi-lingual operations staff, and provide training.

Software Development Coordination

• Ensure widespread operations locations are included in discussions with developers/controls.

Working Relationship With Support Groups

- Periodic rotation of remote staff to site lab
- Include local on-site support staff in remote operations shift changes

Information Flow

- Reactor model rigorous control of information.
- "Post-its" on a console in one control room are not adequate operator aids for operators in another control room.
- Strict document control required to insure timely information reaches all groups.

Identical Consoles

• Consoles in each control room must be identical

Shutdown Activities

• What will operators in remote control rooms do during long machine shutdown periods?

Discontinuous Shift Rotation (Example 3 Weeks On, N Weeks Off)

 Negotiate and reach agreement on optimal shift schedule to assure adequate continuity in operations

TV Cameras in Control Rooms?

- Not desirable.
- Value added?
- Operator controlled camera shade will make the idea more palatable.

Who Is Responsible for a Mistake?

- Question of blame for, say, environmental mistakes.
- Requires agreed limits on liability before start of commissioning.

How to Deal With Bargaining Unit (SLAC)/contract (KEK) Employees?

- Negotiate and reach agreement with appropriate labor and management bodies.
- Operations employees should be all "the same" (all contract/bargaining etc.).

Normalized Compensation – Compensation for Same Job May Vary by Location

- Operators talk to each other.
- Negotiate and reach agreement with appropriate labor and management body.

Power Failure at Controlling Lab (Not Machine Site Lab)

- Monitoring and interlock of beam until control re-established.
- Maintain "heartbeat" between controlling lab and site lab.
- Hand off to "next" lab in the shift rotation?

Recovery From Faults, e.g. Power Dips, etc

- Requires increased formality of operations.
- Detailed documentation, procedures (operations and troubleshooting) and training.
- Potential big issue; better and more reliable diagnostics.

Recovery From Machine Development (Example Shift Starts W/ One Lab "in Control")

- Requires increased formality of operations.
- Detailed documentation, procedures (operations and troubleshooting) and training.
- Potential big issue; Better and more reliable diagnostics.

Roles, Responsibilities, Authorizations, Authorities (next series of slides)

- Shift supervisor
- Group leader
- Maintenance coordinator
- Run coordinator

Shift Supervisor Concerns

- Configuration control.
- Shift supervisor must have authority to permit changes to the state of the accelerators during production running.
- Must be in the decision loop when state changes (maintenance, machine development) are made.

"Site Concerns"

Need STRONG on site personnel presence for:

- Fault recovery.
- Emergency response.
- Access control.
- Radiation surveys.
- Search and secure.
- Lockout Tagout,
- Key configuration control, etc.

"Group Leader Concerns"

- How to organize shifts across N laboratories.
- "Authority" for personnel management across N labs.
- Need to define organization structure and hierarchy.

Maintenance Coordination, Authorization, Prioritization

- Need strong central maintenance coordinator (may need to be on-site) working with a central run coordinator.
- Allow for additional on-site manpower for maintenance recovery.

Run Coordinator Concerns

- Machine development/studies protocols gives approvals.
- Program coordination (eg.Determine start of maintenance) – coordinator may need to be at site lab near experiments and machines.
- Experiment liaison, program scheduling & coordination (fine scale through macro scale).
- Coordination of daily or weekly status meetings.

Devils Advocate Question

Remote operations appears feasible, but, given that some level of local on-site, 24/7 support is necessary, why not implement (instead) a concept with a central CR and full operations/support staff on-site, w/ remote "consoles" distributed to enable remote accelerator physics/machine development and expert troubleshooting/monitoring?